
1

13/7/98 Gilb@ACM.org 1

The Alternatives and Supplements
to Conventional Testing

�Quality Week 1998, San Francisco CA
l Www.soft.com

l Wed. 27th May 1998

l Session 4Q 3:30-5:00 PM

�Tom Gilb
l Homepage: www.Result-Planning.com

l Iver Holtersvei 2, N-1410 Kolbotn, Norway

l Gilb@ACM.org, +47 66801697

13/7/98 Gilb@ACM.org 2

Purposes of ‘Conventional Testing’

�Evaluate whether Software can be
released
l Economically

l Safely

�Clean up software
l Remove bugs

l Regression test

2

13/7/98 Gilb@ACM.org 3

First premise of this talk:
Test Alternatives

�Any method which can serve the purposes of
conventional testing

l More effectively or

l Less costly
• In terms of money, people, time

l is worthy of being used instead of conventional
testing

13/7/98 Gilb@ACM.org 4

Talk Premise 2

�Any method which can improve conventional
testing process in effect or costs deserves to be
considered as a supplement to them.

3

13/7/98 Gilb@ACM.org 5

An alternative to Conventional Testing

�Would make some type, form, or extent of
testing unnecessary

�Because the alternative would be more
effective and/or less costly

13/7/98 Gilb@ACM.org 6

Some alternatives

�A1. Ship ‘testing’ to users

�A2. Distinct Software

�A3. Evolutionary Testing

�A4. Defect Detection Inspections

�A5. Defect Prevention Process

4

13/7/98 Gilb@ACM.org 7

A1. Ship testing to users

� Leon Osterweil U of .
Mass. Amhurst at
Quality Week 96
“Perpetually Testing
Software” 22 May 96.

�Allow users to test
software

�with their HW/SW
configuations

�Requires much more
design for an
‘exportable test process’

�Solves the problem of
all the possible
combinations of
equipment and software
components now and
later, a user can have.

�Gives supplier much
better documentation of
bug situations

13/7/98 Gilb@ACM.org 8

A2. Distinct Software

�2 or more independent
modules

�Should have same
outputs for same inputs

�A ‘supervisor’ checks
outputs and reacts

�Reactions are:
l Log situation

l Stop the process for
manual evaluation

l Make a choice based on
• Probably right answer

�Practised at least since
1970s, Space Shuttle etc.

�Also known as ‘N-
version programming’

�Essentially same
principle as a Tandem
computer, except in
software.

�Allows ‘testing’ in real
time using only real
data

� Example: Avizienis 1984 Design Diversity:an
approach to fault tolerance of design faults, Proc.
NCC AFIPS Press 53, pp163-171.

5

13/7/98 Gilb@ACM.org 9

A2. Distinct Software

Module 1

Output
Supervisor

Module 3

Module 2Input
Supervisor

23

23

23

46

46

4600

46

Log 1630:

 Module 3 seems to have produced an
erroneous result. Wrong order of
magnitude, and outvoted automatically.

23

13/7/98 Gilb@ACM.org 10

A2. Distinct Software
�The “expected output” is generated by computer, not a

human tester.
�Can be used in test mode or operational mode
�Can be used in sampling mode operationally
�Can be used for automatic correction
�Gives differential diagnosis automatically
�Cost of generating extra code is less than the saving in

manual test effort (5% coding).
�Distinct modules can be simplified models

l Example Rockwell’s versions of Space Shuttle re-entry versus
IBM’s.

�Can be used at ‘design’ level and/or ‘coding’ level.
l Example Ramamoorthy UCB Nuclear Plant system 1978.

6

13/7/98 Gilb@ACM.org 11

A3. Evolutionary Testing
� “Organic Integration”

l Ericsson, Jack Jarkvik

� Integration testing in 2%
increments

�Testing of all aspects of
system

l Performance

l Reliability

l Usability

l Security

�Some kind of internal
testing is done before release
to Evo user

�Highest Quality levels
might be expected each
step (Mills Cleanroom)

�Feedback goes to
requirements and
design improvement

�No artificial test cases

�Heavy user trial
involvement

� See Gilb: “Evo: The Evolutionary
Project Management Handbook”

l Www.result-planning.com

13/7/98 Gilb@ACM.org 12

“Evo” model

System
Requirements

System
Design Evo Step 1

Evo Step 2

Evo Step n

Evo Step
1. Requirements
2. Step Design
3. Assemble, Test
4. Deliver Step(field test)

5. Study Step

7

13/7/98 Gilb@ACM.org 13

IBM Cleanroom Test Practice

�“When the development and test of an increment are
complete, an estimate to complete the remaining
increments is computed.

l The algorithms used in this computation should reflect the
various actual productivity rates experienced in developing
and testing previous increments.

l An alternative plan is prepared and reviewed, as previously
described, whenever a cost projection is inconsistent with its
cost plan….

l The design-to-cost practice describes the management control
procedures that balance cost, schedule, and functional
capability.”

l Robert Quinnan, [IBM Systems Journal Four 1980, page
474]

13/7/98 Gilb@ACM.org 14

Backroom Frontroom

B

C

E

A

F

G

D

H

t1 t2

B

C

E

A

F
G

D

H

t2

t1

t3

t3

8

13/7/98 Gilb@ACM.org 15

Requirements Refinement (JPL)

�“a key benefit … is its ability to progressively
refine requirements

l and to respond easily to the refinements.

�Refinement is done on the basis of
l developmental test,

l training, and

l operational experience.

�Requirements feedback facilitates working in an
environment of change.” [SPUCK93]

13/7/98 Gilb@ACM.org 16

Usability Example Graphically

Usability: -|-|-|- minutes for User to do TaskProduct

Record 10
secsTrend 20

minutes

Past 30
minutes

Wish 5 minutes <- Chairman

Plan [1st rel.] 50% of 10 minutes Plan [within 2 yrs.
1st rel.] 30% of 10
minutesMust 10 mins.

9

13/7/98 Gilb@ACM.org 17

Usability Evo Delivery

Usability: -|-|-|- minutes for User to do TaskProduct

Record 10
secsTrend 20

minutes

Past 30
minutes

Wish 5 minutes <- Chairman

Plan [1st rel.] 50% of 10 minutes Plan [within 2 yrs.
1st rel.] 30% of 10
minutesMust 10 mins.

Step 1 Step 2 Step3 Step 4

13/7/98 Gilb@ACM.org 18

An example of a typical one-week Evo cycle at the
HP Manufacturing Test Division during a project.

[MAY96]
Wednesday Development Team Users

Monday � System Test and Release
Version N

� Decide What to Do for Version
N+1

� Design Version N+1

Tuesday � Develop Code � Use Version N and Give
Feedback

Wednesday � Develop Code
� Meet with users to Discuss

Action Taken Regarding
Feedback From Version Nû1

� Meet with developers to Discuss
Action Taken Regarding
Feedback From Version Nû1

Thursday � Complete Code

Friday � Test and Build Version N+1
� Analyze Feedback From Version

N and Decide What to Do Next

10

13/7/98 Gilb@ACM.org 19

Dynamic Priority

Product

Step 1

Step 1

Step 2

Step 2

St.3

Must

Must Plan

Plan

‘Performance’ now has priority
because it is not at ‘survival’ level yet

‘Reliability’ now has priority
because it has not reached

‘satisfaction’ level yet.

13/7/98 Gilb@ACM.org 20

Microsoft Pairs up Testers and Developers in Milestone tests

� “Development Phase: Feature development in 3 or 4 sequential subprojects
that each results in a milestone release.

� --------------------------------

� Program managers coordinate evolution of specification.

� Developers design code and debug.

�Testers pair up with developers for continuous testing.

� ----------------------------------
• Subproject I First 1/3 of features. Most critical features and shared components.

• Subproject II Second 1/3 of features.

• Subproject III Final 1/3 of features. Least critical features.”

� Cusumano and Selby, Microsoft Secrets, page 194.

� The point I want to bring out here is the priority sequencing rule at
Microsoft. A milestone is a 6-10 week segment.

11

13/7/98 Gilb@ACM.org 21

HP on Releasing after Evo cycles
� “With an Evo approach, the team has greater flexibility as the

market window approaches.

�Two attributes of Evo contribute to this flexibility.
l First, the sequencing of functionality during the implementation phase

is such that “must have” features are completed as early as possible,
while the “high want” features are delayed until the later Evo cycles.

l Second, since each cycle of the implementation phase is expected to
generate a ‘complete’ release, much of the integration testing has
already been completed.

l Any of the last several Evo cycles can become release candidates after
a final round of integration and system test.

l When an earlier-than-planned release is needed, the last one or two
Evo cycles can be skipped as long as a viable product already exists.

l If a limited number of key features are still needed, an additional Evo
cycle or two can be defined and implemented…”

l [COTTON96, HP Journal August 1996]

13/7/98 Gilb@ACM.org 22

Daily Build Process at Microsoft

l .Check Out [copies of code from master version]

l .Implement Feature.

l .Build Private Release.

l .Test Private Release.

l .Synch Code Changes [use compare tool to make sure no changes since
checkout].

l .Merge Code Changes.

l .Build Private Release [merged with other developers’ changes]

l .Test Private Release

l .Execute Quick Test.

l .Check In.

l .Generate Daily Build.

l .Execute automated tests

l .Make Build Available to All Project Personnel

� (including program managers, developers, testers, and user education staff
for their use and evaluation)”

� Headlines only, from Cusumano and Selby, Microsoft Secrets, page 264-7

12

13/7/98 Gilb@ACM.org 23

HP Evo Experiences
�“...and the team attributed several positive results to having used

the Evo method for the majority of the project.

�First, Evo contributed to creating better teamwork with users
and more time to think of alternative solutions.

�Second, the project still had significantly fewer critical and
serious defects during system testing.

�Third, the team was surprised to see an increase in productivity
(measured in [non-commentary lines of code] per engineer-
month).

l The project manager attributes this higher productivity primarily to
increased focus on project goals.”

� [MAY96, Elaine May, HP Journal Aug 1996, on hp web]

13/7/98 Gilb@ACM.org 24

A4. Defect Detection Inspections

�95% of injected defects
can be removed before
first test (IBM, Sema)

�44%->62% of all code
defects which escape
test to field, are due to
requirements/design
specification defects
(TRW, Bellcore).

�40% 0f all development
effort is retesting due to
bugs.

l This can be avoided
using Inspections
(Raytheon 95)

13

Costs of Non-conformance Items

�Re-reviews

�Re-tests

�Fixing Defects (code,
documentation)

�Reworking any
document.

�Engineering Changes

�Lab Equipment
Costs of Retests

�Updating Source
Code

�Patches to Internal
Code

�Patches to Delivered
Code

�External Failures
� from Crosby’s Model

according to Raytheon95
Fig. 7

13/7/98 Gilb@ACM.org 26 Version 0.1 Half-day Inspection Economics. Gilb@acm.org

When do Defects occur? Upstream!

�Four US
Command &
Control Systems
studied

Source of data is TRW Series,
 North-Holland Publishers,
"Software Reliability" (B. Boehm)

100% of customer reported problems

31% design
error

reduction
 from

‘process
 improvements’

after 2
releases

(Inspection)

14%

30%

Fault density was currently two faults per 1,000 lines of code for
ìtime during serviceî. This was for one million lines of code in
switching products. ìMost operational problems were discovered
within the first five years of service.î I. e. 2,000 bugs per million
lines of code, and each bug costs average $6,000 each ($6,000,000
for 1,000 was cited).

From Pence and Hon.

PS by phone the authors told Gilb that the true
cost was more like $6,000 x 7 (Baby Bells).

62%
Design

was
source

Code
38%

 Source: J. L. Pete Pence and Samuel E. Hon III,
Bellcore Piscataway NJ
Building Software Quality Into
 Telecommunications Network Systems,
Quality Progress, Oct. 1993 pp. 95-97
‘a recent defect analysis on switching
 system software’, a supplier determined (this data).

Design
errors
44%

14

13/7/98 Gilb@ACM.org 27

A5. Defect Prevention Process

�DPP (= CMM 5), Mays and Jones IBM
�Can be applied to any ‘test’ process

l So as to make it more effective

�Can be applied to any software process
l So as to reduce test bugs and difficulties

�DPP feeds off of all defect data
l From all tests
l From inspections
l From field reports

�Basic idea: systematic analysis of ‘root’ cause
l And changing the work process to avoid the cause

13/7/98 Gilb@ACM.org 28 Version 0.1 Half-day Inspection Economics. Gilb@acm.org

Defect Prevention Experiences:
Most defects can be prevented from getting in

there at all

% of usual
defects
prevented

•Years of continuous improvement effort

50%

70%
80%
90%

Mays & Jones (IBM) 1990

Mays 1993, User 1996 “72% in 2 years”<-tg

1 2 3 4 5 6

Cleanroom levels: approach zero def.

IBM MN 99.99%+ fixes:Key= DPP

North Carolina

IBM Research Triangle Park Networking Laboratory

 Florence Gans 919 254 5643
 Advisory Programmer
 Defect Prevention Process Consulting
 Network Software Division
 IBM

 4205 South Miami Bvld.
 Dept. A69, Bldg. 501, C112
 Research Triangel Park NC 27709
flogans@us.ibm.com (1998 new one)

15

13/7/98 Gilb@ACM.org 29 Version 0.1 Half-day Inspection Economics. Gilb@acm.org

Prevention + Pre-test Detection
is the most effective and efficient bug avoidance method

� Prevention data based on state of the art prevention experiences (IBM
RTP), Others (Space Shuttle IBM SJ 1-95) 95%+ (99.99% in Fixes)

� Cumulative Inspection detection data based on state of the art Inspection
(in an environment where prevention is also being used, IBM MN, Sema UK, IBM
UK)

\

50%

70%
80%
90%

<-Mays & Jones 50% prevented(IBM) 1990

<- Mays 1993, 70% prevented

1 Yr. 2 3 4 5 6

 Prevented

70% Detection
 by Inspection

95% cumulative detection
by Inspection (state of the art limit)

Test

 Detected
Cheaply

100%
Usage

13/7/98 Gilb@ACM.org 30

A Supplement to testing

�Can be added to current test process

�And would make them more effective

�Or less costly

16

13/7/98 Gilb@ACM.org 31

Some supplements to Conventional Testing

� s1.Formal Test Entry

� s2. Formal Test Exit

� s3. Inspection of Test plans
and test cases

� s4. Quality Testing

� s5. Evolutionary field trial
deliveries

� s6. Design for Testability

� s7. Inspection of Changes

� s8. Robust design

� s9. Motivation

� s10. Rework cost reduction

� s11. Continuous
Improvement

� s12. Managing Test Process
Qualities

� s13. Design for Quality

� s14. Defined Rules for Test
Planning

� s15. Impact Estimation

13/7/98 Gilb@ACM.org 32

s1.Formal Test Entry
�Entry Conditions

l Minimum quality levels of documentation from
which test plans and cases are derived

• Example: ‘Maximum 1.0 Major defects/page remaining’

l More generally: any technical document used has
exited formally from its own inspection process.

• This implies that the documents are trustworthy and
can economically be used to generate tests

Requirements
Entry to Test
Planning

Test Planning

17

13/7/98 Gilb@ACM.org 33

�Can be used to prevent ‘false’ ends to test planning or to
test process
�For test planning,

l Use ‘Inspection’ (possibly a sample)
l Based on Major defects found and fixed:

• Calculate remaining Major defect/Page
• Set a threshold level for exit, ex. “Max 1.0/Page’

�For testing processes
l Set numeric levels of critical parameters

• Requirements, Coverage, Volume, Bugs, Corrections
• Calculate critical levels of combinations of these

s2. Formal Test Exit

Test Process Data Exit Process: evaluate

Exit allowed

Exit failed

13/7/98 Gilb@ACM.org 34 Version 0.1 Half-day Inspection Economics. Gilb@acm.org

98.7% Detection Effectiveness:
Bull

�Project D with 18,000 LOC, data access service
module, 112 modified modules.

�298 Major defect found by inspections

�no bugs found in first six modified modules

�based on this sample they skipped unit test

�Only 4 defects found later (one year test & use)

�298/302 = 98.7% inspection effectiveness.

�Code insp. pretest 80%, post test 70% (Proj C)

�Source Ed Weller IEEE Software Sep.1993

18

13/7/98 Gilb@ACM.org 35

s3. Inspection of Test plans and test cases

� IBM Experience Unit Test Inspections
l 82% of human effort saved

l 93% computer time saved

l As a result of ‘forcing better test organization’MF

�Inspection based on defined best practice
rules for planning tests

l Teaches the best rules

l Reinforces through feedback when not followed

l Is a basis for continuous improvement of the Rules

13/7/98 Gilb@ACM.org 36

s4. ‘Quality’ Testing

�Test a set of qualitative aspects of your system
l Not just functionality and performance

l Security, Usability

l Installability, Maintainability

l Mean time to Failure (Reliability).

�Validate the resultant qualities of the system
‘functionality’, not just that the functions
intended to give quality are present.

�You should have agreed requirements
definitions of these things to base your tests on.

19

Monday, July 13, 1998 Copyright Gilb@acm.org 37

PORTABILITY
�PORTABILITY:

�GIST: portability of all test scripts and tools to
defined customer environment <-Leon Osterweil’s
idea Univ Amherst

�SCALE: hours per 100 test cases of conversion to
[defined platforms] using [defined methods or tools
and human efforts] using [defined human skill
levels]

�METER: by selected samples of past and current
test porting efforts.

�PLAN [to UNIX, SRA Tools, NOVICE TRAINEE
CUSTOMER TESTERS] 2 hours “per 100 test
cases converted”

13/7/98 Gilb@ACM.org 38

s5. Evolutionary field trial deliveries

� Evolutionary delivery steps, frequently, early

�Confirms testing result, with real users

� Done as system is built, not at end

�Can generate realistic test scripts for
regression tests

� Can test things like performance and
usability which are difficult to test in lab

�Can point out weaknesses in testing plans and
cases

20

13/7/98 Gilb@ACM.org 39

Evo Cycles

Slide 68Evolutionary Project Management Cycle

PLANPLAN

Set Improvement TargetsSet Improvement Targets

Find Design ideas/StrategiesFind Design ideas/Strategies

Evaluate IdeasEvaluate Ideas

Make Calendar-time planMake Calendar-time plan

Make or Buy the Evo Evo step step

System Test Step internallySystem Test Step internally

Do Step with UserDo Step with User

Study ResultsStudy Results

Strategic Objectives,Strategic Objectives,
Architecture Architecture andand

 Plans Plans

"Head"

"Body”
 or

“micro-project”

A Step

DoDo

StudyStudy

ActAct

Project
 Architecture

and
Management

Level

Evo allows “Continuous
Project Improvement”,
while DPP (Defect
Prevention Process),

(used by Raytheon)

focuses on organizational
learning, improving many
people, teams, projects
later;

(maybe not this project)

13/7/98 Gilb@ACM.org 40

s6. Design for Testability

� Design both your product and your processes
for ease of testing
�Begin by quantifying your ‘ease of test’

objectives.
�Design to meet the objectives.
�Test (measure) that you are meeting them
�Relate objectives to costs of not meeting them

l To ensure motivation and funding to work this
aspect

l Calculate return on investment to motivate
continuance of the effort

21

Monday, July 13, 1998 Copyright Gilb@acm.org 41

Test dimensions

 Test Process Quality of Test

Test Process
Attributes

Monday, July 13, 1998 Copyright Gilb@acm.org 42

1st Area of application: Test Goodness Measures
Quality of a Test Process, a brainstormed list by participants 1996

�Effectiveness (% of existing defects found)

�Efficiency (bugs per work hour?)

�Time to release to market

�Reliability of product (mean time to fail for specified
users)

�Maintainability (mean time to fix a defect) of test script

�automatic testability

�Remaining defects afterwards for system lifetime

�Simplicity of executing the tests by defined test people.

�Accuracy of testing intended things

�Portability of test materials to other environments,
platforms

22

Monday, July 13, 1998 Copyright Gilb@acm.org 43

An example of definition:
Test Effectiveness Measures

´ TEST-EFFECTIVENESS “for a defined process”

´ GIST: what portion of defined defect types are we finding using
our test processes?

´ SCALE: % of [DEFINED DEFECTS] identified by DEFINED
TEST PROCESSES within DEFINED EFFORT using DEFINED
TOOLS

´ METER: <sampling of test efforts by QA>

´ PAST [LOGICAL BUGS, BRANCH COVERAGE TESTING,
80% level effort, SRA Tools] 50% + or - 30%?? <- Tom Gilb wild
illustrative guess to provoke better information.

´ PLAN [ANY DESIGN DEFECT, {Inspection and Our Tests}, 1
work hour per 100 LOC, NO SPECIAL TOOLS] 30% ?? <- swag
tg

´ DEFECTS:DEFINED: any difference from formal requirements.

´ DESIGN DEFECT: DEFINED : any difference from specified
design.

13/7/98 Gilb@ACM.org 44

s7. Inspection of Changes

� IBM found Inspection of changes 2X more profitable
than Inspection of new code (MF 1984)

�IBM (Kan MN) and Space Shuttle have achieved
about 99.99% correct corrections by Inspecting the
fixes before testing them.

�You need to base the Inspections on a state of the art
Standard

l (Rules, Checklists, Optimum Checking Rates).
l Must use Input Sources (changes, old system)
l A solid Inspection Process (See Optimizing Inspection, DoD

Crosstalk March 1998), not the commonly misused
Inspection process (bad checking rates, bad Exit Entry
control, inadequate Rules specification)

23

13/7/98 Gilb@ACM.org 45

s8. Robust design

� Consider designing your system to tolerate
bugs! (but ‘test people’ don’t get to do this!)

�Distinct Software or N-version programming is
one possibility

�Larger amounts of logic checking
reasonableness

�Better Object encapsulation

�Built-in testing mechanisms (perhaps you can!)

�Database diagnosis, maybe in real time

13/7/98 Gilb@ACM.org 46

s9. Motivation

�“Motivation is Everything!”

�Have you looked at your organization’s
motivation

l To test well enough

l To test early and frequently

l To do continuous improvement on testing?

l To avoid injecting upstream defects into test
• Code, requirements, design specs, user manuals

�How are people paid and rewarded?

�Is there a team developers and testers?
l Or a wall, us and them?

24

13/7/98 Gilb@ACM.org 47

HP Motivation & Evo test
�“Some of the gains in productivity seen by project teams using

Evo have been attributed to higher engineer motivation.

�The long implementation phase of the waterfall life cycle is
often characterized by large variations in engineer motivation.

� It is difficult for engineers to maintain peak productivity
when it may be months before they can integrate their work
with that of others to see real results.

�Engineer motivation can take an even greater hit when the
tyranny of the release date prohibits all but the most trivial
responses to customer feedback received during the final
stages of system test.”

� COTTON96, Todd Cotton, HP Journal August 96
l Available via web.

13/7/98 Gilb@ACM.org 48

s10. Rework cost reduction

� Most testing effort is in fact unnecessary
rework (regression after fixing)
�Most of the rework can be systematically

reduced (10x) by hard work in improving the
processes which generate it

l Improve requirements processes
l Improve Inspections upstream
l Improve reuse of code and other systems

�Maybe one day testing can do what it is
supposed to do properly

l Instead of cleaning up other peoples dirty laundry!

25

Cost of Quality over Time: Raytheon 95

The individual
learning curve ??

Cost of Rework
(non-conformance)

Cost of
Conformance

End 1988 End 1994

45%

13/7/98 Gilb@ACM.org 50

s11. Continuous Improvement

� Are you part of a serious continuous
improvement effort

l One that is measured in terms of effects

l And return on investment

�Is your effort specifically directed towards
testing?

�Is it also directed towards the things that
impact testing

l Upstream defects

l Upstream documentation

26

13/7/98 Gilb@ACM.org 51 Version 0.1 Half-day Inspection Economics. Gilb@acm.org

IBM MN & NC DP Experience
�2162 DPP Actions implemented

l between Dec. 91 and May 1993 (30 months)<-Kan

�RTP about 182 per year for 200 people.<-Mays 1995
l 1822 suggested ten years (85-94)

l 175 test related

�RTP 227 person org<- Mays slides
l 130 actions (@ 0.5 workyears

l 34 causal analysis meetings @ 0.2 workyears

l 19 action team meetings @ 0.1workyears

l Kickoff meeting @ 0.1 workyears

l TOTAL costs 1% of org. resources

�ROI DPP 10:1 to 13:1, internal 2:1 to 3:1

�Defect Rates at all stages 50% lower with DPP

13/7/98 Gilb@ACM.org 52

s12. Managing Test Process Qualities

� Assuming you have defined your desired
‘test process qualities’ ,

l Does someone ‘own’ the test processes

l Is there a budget for test process improvement
effort?

l Is there motivation to make it happen, this year?

�Is test part of the larger effort to improve
systems

l Or is it focussed on development ex test

l Is it focussed on the total lifecycle costs?

27

13/7/98 Gilb@ACM.org 53

s13. Design for Quality

� Is there a design process which has quantified
quality targets ?

�Does your organization consciously design
various quality aspects into product and
process?

�Do you have quality estimation ability during
the design phase (like ‘Impact Estimation’)?

�Does anybody actually test that the design-in
qualities are present?

l Do they test these qualities evolutionarily?

13/7/98 Gilb@ACM.org 54

s14. Defined Rules for Test Planning

�Is there a strong set of Generic technical
documentation rules which apply to test
planning as well

l On subjects like tagging, cross referencing, clarity

�Is there a strong set of specific rules in
addition for specific types of test planning

l Test strategies/plans
l Test scripts
l Planning maintenance change tests

�If not, how do people learn best practices
rapidly in a large organization?

28

13/7/98 Gilb@ACM.org 55

Generic (Engineering Specification) Rules ID:S.Rules.GEN 1/4

• .

� GEN.0 Generic Rules: Defined:

l Generic Rules are engineering specification rules applying to all engineering documents as required
best practices. They are separated from related Specific Rules so as to avoid repeating them, and to
permit learning them well.

� GEN.1 (Consistency)

l Specifications must be consistent with all other related specifications in the same document, and in all
related documents {Sources, Kin and Children}, otherwise potential defects are to be suspected.

� GEN.2 (Unambiguous)

l All specifications must be unambiguous to the Intended Readership, as practiced or implied, for that
document.

� GEN.3 (Notes)

l All manner of comment, notes, suggestion or ideas which are not themselves the actual engineering
specification, but merely background, shall be clearly distinguished as such by suitable devices.

l Suggested Devices: italics, ”double quotes”, Note:…, Comment:…., use of footnotes, use of separate
commentary pages.

l In particular defects in a note should never result in a Major Defect.

13/7/98 Gilb@ACM.org 56

Generic Rules Page 2
� GEN.4 (Brevity)

l All specification shall be as brief as possible, in order to successfully support their purpose, for the
defined Intended Readership.

� GEN.5 (Clarity of Purpose)

l All specification shall result in clarity to the Intended Reader regarding it’s purpose or intent.

l Note: it is not enough that the statements are unambiguous. They must contain clarity of purpose:
why is this here?

� GEN.6 (Elementary)

l Specification statements shall be broken up into their most elementary form.

l Note: this is so that they each can be unambiguously cross-referenced externally.

l Note: an elementary specification can be refered to by its tag (or global tag), and within that, any unique
combination of Parameter (for example Meter, Past) and/or Qualified (for example ”[UK, 1999]”) may
be used to refer to or distinguish an elementary idea.

� GEN.7 (Unique)

l Specifications shall only have a single instance in the entire project documentation.

29

13/7/98 Gilb@ACM.org 57

Generic Rules Page 3 of 4
� GEN.8 (ID Tags)

l All specifications statements must have some unique and unambiguous cross-reference
capability, which is stable (independent of sequence and changes).

l Statements may be directly tagged.

l Statements may be referenced by a hierarchy of tags

l Statements may be referenced in detail using Parameter names (like Meter, Plan) and
Qualified (like [Euro, 2001])

l References may have defined synonyms for convenience.

� GEN.9 (Reuse)

l Tagged Ideas shall be ’reused’ by cross-reference to their unique tag, or their tag and
version information.

� GEN.10 (Source)

l Specifications shall contain detailed (paragraph, unique tag level) about their exact and
detailed sources.

l Note use: ’Spec <- Source’ format or ’Source:……’

� GEN.11 (Hierarchy)

l Specifications shall be logically organised into a useful hierarchical structure.

l The tagging system shall reflect that structure (example A.B.C)

l Note: this may be partly done through templates.

13/7/98 Gilb@ACM.org 58

Generic Rules page 4 of 4
�GEN.12 (Auditability)

l All changes to specifications shall be done in such a way as to permit us
to know who changed things, what the previous version was, perhaps
even justification for the change.

�GEN.13 (Risk)

l The specification Author must clearly indicate any information which
is uncertain or poses any risk to the project whatsoever, using a variety
of available devices such as {<fuzzy brackets>, ??, ?, ranges (60->70,
60±10%), suitable comments or notes}.

�GEN.14 (Template)

l The relevant electronic template shall be used, for specific headings and
guidance under each heading.

�GEN.15 (Model)

l A ’best practice’ model shall be defined and available. It shall be used
to help interpret the intent of these rules in practice.

30

13/7/98 Gilb@ACM.org 59

 s15. Impact Estimation

� Impact estimation tables can be used to
systematically evaluate all test processes, tools,
methods and alternatives

�The basis for evaluation is your tailored objectives
for test, test processes, current project objectives,
component objectives

�Test ‘means’ are evaluated in relation to these
objectives, and with regard to other test ‘means’
(strategies) being considered.

�It forces people to think about what they know, or do
not. It is more objective.

13/7/98 Gilb@ACM.org 60

“Impact Estimation” concepts: full table

Tags of proposed TOTAL SET of
strategies (defined elsewhere) to meet
objectives, within resource constraints.

AVAILABILITY

PORTABILITY

USABILITY

BUDGET

EMPLOYEES
"0->32 people"

A1 B4 CD DX Sum

0% 100% 50% -5% 145%

1 1 1 1 4%

60
±20

"99.9%->99.98%"

"0->1 million" 100

Benefit/Cost->

0
0.6

99

10%

30%

5.0

41 200 400%

? n.a. 110?

9±5

"3 mins.->1"

"80%->95%"

"PAST->PLAN"

Strategies->
Objectives

31

13/7/98 Gilb@ACM.org 61

“Impact Estimation” concepts: detail

AVAILABILITY

PORTABILITY

USABILITY

BUDGET

EMPLOYEES
"0->32 people"

A1 B4 CD DX Sum

0% 100% 50% -5% 145%

1 1 1 1 4%

60
±20

"99.9%->99.98%"

"0->1 million" 100

Benefit/Cost->
0

0.6

99

10%
30%
5.0

41 200 400%

? n.a. 110?

Quality and
 Benefit
Objectives

Rough sum of effects
of all strategies on a

single attribute's
planned

level.

Clearly not
good enough
design yet

Safety
margin
4XResource

Budget
tags

Sum Benefits / Sum resources
= rough relative goodness
of a strategy with respect to
all objectives.

Tags of proposed TOTAL SET of
strategies (defined elsewhere)

for meeting the quality
objectives, within resource constraints.

9±5 Explicit uncertainty estimate

"3 mins.->1"

"80%->95%"

"PAST->PLAN"

Strategies->
Objectives

USABILITY:A1

Design method A1 in all competitive products and in
our lab prototypes shows user learning time to be
under two minutes. <- Lab Report U-92

USABILITY:
SCALE: Avg. Minutes for typical
 user to learn to operate our product.
METER [accept] at least 100 users.
PAST[1993, Old Product] 3 minutes.
PLAN[New Produc,1995t] 1 minute.
 [New Product, 1996] 30 secs.

Objective
 statement, example

Evidence

A1: Graphical interfaces using minimal
language, no codes, maximum
pictures, maximum user tailoring,
maximum learning about particular
users.

Strategy Definition Example

Estimation language:

0% = no effect with respect to PAST level.

100% = expected to meet PLAN level.

negative effect= makes things worse than PAST level.

? = no basis for an estimate.

n.a. = not applicable.

13/7/98 Gilb@ACM.org 62

So what?

�I hope this gives you a rich set of ideas to
consider for improving your software
development process, especially the testing
process.

�Maybe one of them is worth working on from
next week? (well you can at least think about
it!)

�The others can be on your evolutionary list of
things to do.

�More detail in the references! :)> Tom

32

13/7/98 Gilb@ACM.org 63

Some References

�RPL Site: www.Result-Planning.com
l Gilb web site with many papers, slides, book

manuscripts to supplement this talk.

�Software Inspection: by Gilb and Graham
l Addison-Wesley Longman 1993

�Raytheon95: SEI Website report
l Ftp.sei.cmu.edu/pub/documents/95.reports/pdf/tr017.95.pdf

�PoSEM: Gilb: Principles of Software Engineering
Management, Addison-Wesley Longman, 1988

